Automatically Improve Software Architecture Models for Performance, Reliability, and Costs Using Evolutionary Algorithms
نویسندگان
چکیده
Quantitative prediction of quality properties (i.e. extrafunctional properties such as performance, reliability, and costs) of software architectures during design supports a systematic software engineering approach. Designing architectures that exhibit a good trade-off between multiple quality criteria is hard, because even after a functional design has been created, many remaining degrees of freedom in the software architecture span a large, discontinuous design space. In current practice, software architects try to find solutions manually, which is time-consuming, can be error-prone and can lead to suboptimal designs. We propose an automated approach to search the design space for good solutions. Starting with a given initial architectural model, the approach iteratively modifies and evaluates architectural models. Our approach applies a multi-criteria genetic algorithm to software architectures modelled with the Palladio Component Model. It supports quantitative performance, reliability, and costs prediction and can be extended to other quantitative quality criteria of software architectures. We validate the applicability of our approach by applying it to an architecture model of a component-based business information system and analyse its quality criteria trade-offs by automatically investigating more than 1200 alternative designs candidates.
منابع مشابه
An Evolutionary Method for Improving the Reliability of Safetycritical Robots against Soft Errors
Nowadays, Robots account for most part of our lives in such a way that it is impossible for usto do many of affairs without them. Increasingly, the application of robots is developing fastand their functions become more sensitive and complex. One of the important requirements ofRobot use is a reliable software operation. For enhancement of reliability, it is a necessity todesign the fault toler...
متن کاملSoft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors
Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...
متن کاملOptimal Reconfiguration of Distribution Network for Power Loss Reduction and Reliability Improvement Using Bat Algorithm
In power systems, reconfiguration is one of the simplest and most low-cost methods to reach many goals such as self-healing, reliability improvement, and power loss reduction, without including any additional components. Regarding the expansion of distribution networks, communications become more complicate and the number of parameters increases, which makes the reconfiguration problem infeasib...
متن کاملUsing composite ranking to select the most appropriate Multi-Criteria Decision Making (MCDM) method in the optimal operation of the Dam reservoir
In this study, the performance of the algorithms of whale, Differential evolutionary, crow search, and Gray Wolf optimization were evaluated to operate the Golestan Dam reservoir with the objective function of meeting downstream water needs. Also, after defining the objective function and its constraints, the convergence degree of the algorithms was compared with each other and with the absolut...
متن کاملOptimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network
Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009